Python

Henning Schulzrinne
Department of Computer Science

Columbia University
(based on tutorial by Guido van Rossum)

28-Apr-02 Advanced Programming
Spring 2002

Introduction

= Most recent popular
(scripting/extension) language
= although origin ~1991

= heritage: teaching language (ABC)
= Tcl: shell
= perl: string (regex) processing

= object-oriented
= rather than add-on (OOTcl)

28-Apr-02 Advanced Programming
Spring 2002

Python philosophy

= Coherence

= not hard to read, write and maintain

= power
= scope

= rapid development + large systems

= objects
= integration
= hybrid systems

28-Apr-02 Advanced Programming
Spring 2002

Python features

Lutz, Programing Python

no compiling or linking rapid development cycle

no type declarations simpler, shorter, more flexible

automatic memory management garbage collection

high-level data types and fast development
operations

object-oriented programming code structuring and reuse, C++

embedding and extending in C mixed language systems

classes, modules, exceptions “programming-in-the-large"

support

dynamic loading of C modules simplified extensions, smaller

binaries

dynamic reloading of C modules programs can be modified without
stopping

28-Apr-02 Advanced Programming
Spring 2002

Python features

Lutz, Programming Python

universal "first-class" object model

fewer restrictions and rules

run-time program construction

handles unforeseen needs, end-
user coding

interactive, dynamic nature

incremental development and
testing

access to interpreter information

metaprogramming, introspective
objects

wide portability

cross-platform programming
without ports

compilation to portable byte-code

execution speed, protecting source
code

built-in interfaces to external
services

system tools, GUIs, persistence,
databases, etc.

28-Apr-02 Advanced Programming
Spring 2002

Python

= elements from C++, Modula-3
(modules), ABC, Icon (slicing)

= same family as Perl, Tcl, Scheme, REXX,
BASIC dialects

28-Apr-02 Advanced Programming
Spring 2002

Jack
高亮

Uses of Python

shell tools

= system admin tools, command line programs

extension-language work

rapid prototyping and development
language-based modules

= instead of special-purpose parsers
graphical user interfaces

database access

distributed programming

Internet scripting

28-Apr-02 Advanced Programming

Spring 2002

What not to use Python (and
kin) for

= most scripting languages share these
= not as efficient as C

= but sometimes better built-in algorithms
(e.g., hashing and sorting)

delayed error notification
lack of profiling tools

28-Apr-02 Advanced Programming
Spring 2002

Using python

/usr/local/bin/python
= #1 /usr/bin/env python

interactive use

Python 1.6 (#1, Sep 24 2000, 20:40:45) [GCC 2.95.1 19990816 (release)] on sunoss
Copyright (c) 1995-2000 Corporation for National Research Initiatives.

All Rights Reserved

Copyright (c) 1991-1995 Stichting Mathematisch Centrum, Amsterdam

All Rights Reserved

python —c command [arg] ---
python —i script
= read script first, then interactive

28-Apr-02 Advanced Programming

Spring 2002

Python structure

= modules: Python source files or C extensions
= import, top-level via from, reload
= statements
= control flow
= create objects
= indentation matters — instead of {}
= objects
= everything is an object
= automatically reclaimed when no longer needed

28-Apr-02 Advanced Programming
Spring 2002

First example

#1/usr/local/bin/python
import systems module

import sys

marker = "::z:z:z::*
for name in sys.argv[1l:]:

input = open(name, "r%)
print marker + name
print input.read()

28-Apr-02 Advanced Programming

Spring 2002

Basic operations

= Assignment:
= size = 40
"a=b =c=3
= Numbers
= integer, float
= complex numbers: 1j+3, abs(z)
= Strings
= "hello world®, "it\"s hot*"
= "bye world"
= continuation via \ or use """ long text """

28-Apr-02 Advanced Programming
Spring 2002

Jack
高亮

String operations

= concatenate with + or neighbors
=word = "Help® + x
=word = "Help" "a’
= subscripting of strings
= "Hello"[2] > 'T
= slice: "Hello"[1:2] > ‘el
= word[-1] -> last character
= len(word) > 5
= immutable: cannot assign to subscript

28-Apr-02 Advanced Programming
Spring 2002

Lists

= lists can be heterogeneous

= a = ["spam®, “eggs”, 100, 1234, 2*2]
= Lists can be indexed and sliced:

= a[0] > spam

= a[:2] = ['spam’, 'eggs']
= Lists can be manipulated

*a[2] = a[2] + 23

= a[0:2] = [1,12]

= af[0:0] = 1

= len(a) > 5

28-Apr-02 Advanced Programming
Spring 2002

Basic programming

a,b =0, 1
non-zero = true
while b < 10:
formatted output, without \n
print b,
multiple assignment
a,b = b, atb

28-Apr-02 Advanced Programming
Spring 2002

Control flow: if

X = int(raw_input(*'Please enter #:'))
if x < O0:

x =0

print “Negative changed to zero®
elif x == 0O:

print “Zero*

elif x == 1:
print "Single*
else:

print “More*
= no case statement

28-Apr-02 Advanced Programming
Spring 2002

Control flow: for

a = ["cat”, "window", "defenestrate”]
for x in a:
print x, len(xX)

= no arithmetic progression, but
= range(10) > [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
= for i in range(len(a)):
print i, a[i]
= do not modify the sequence being iterated
over

28-Apr-02 Advanced Programming
Spring 2002

Loops: break, continue, else

= break and continue like C

= else after loop exhaustion
for n in range(2,10):
for x in range(2,n):
ifn%x==0:
print n, “equals®, x, "*", n/x
break
else:
loop fell through without finding a factor
print n, "is prime*

28-Apr-02 Advanced Programming
Spring 2002

Do nothing

= pass does nothing
= syntactic filler
while 1:
pass

28-Apr-02 Advanced Programming
Spring 2002

Defining functions

def fib(n):
""" Print a Fibonacci series up to n."""
a, b=0, 1
while b < n:
print b,
a, b =b, ath

>>> Fib(2000)
= First line is docstring

= first look for variables in local, then global
= need global to assign global variables

28-Apr-02 Advanced Programming
Spring 2002

Functions: default argument

values
def ask_ok(prompt, retries=4,
complaint="Yes or no, please!®):
while 1:
ok = raw_input(prompt)
if ok in ("y", "ye", "yes"): return 1
if ok in ("*n", "no"): return O
retries = retries - 1

if retries < 0: raise 10Error,
"refusenik error*

print complaint

>>> ask_ok("Really?")

28-Apr-02 Advanced Programming
Spring 2002

Keyword arguments

= |last arguments can be given as keywords
def parrot(voltage, state="a stiff", action="voom",
type="Norwegian blue®):
print “-- This parrot wouldn®t", action,
print "if you put”, voltage, "Volts through it."
print “Lovely plumage, the ", type
print "-- 1t"s", state, "I

parrot(1000)
parrot(action="VOOOM*", voltage=100000)

28-Apr-02 Advanced Programming
Spring 2002

Lambda forms

= anonymous functions
= may not work in older versions
def make_incrementor(n):
return lambda x: x + n

f = make_incrementor(42)
(0)
(D

28-Apr-02 Advanced Programming
Spring 2002

List methods

= append(x)
extend(Ll)
= append all items in list (like Tcl lappend)
= insert(7,x)
= remove(x)
= pop(Lil), popO
= create stack (FIFO), or queue (LIFO) - pop(0)
= index(x)
= return the index for value x

28-Apr-02 Advanced Programming
Spring 2002

List methods

= count(x)

= how many times x appears in list
» sort()

= sort items in place
» reverse()

= reverse list

28-Apr-02 Advanced Programming
Spring 2002

Functional programming tools

= filter(function, sequence)
def f(x): return x%2 !'= 0 and x%3 O
filter(f, range(2,25))

= map(function, sequence)
= call function for each item
= return list of return values

= reduce(function, sequence)
= return a single value
= call binary function on the first two items
= then on the result and next item
= jterate

28-Apr-02 Advanced Programming
Spring 2002

List comprehensions (2.0)

= Create lists without map(),
filter(), lambda

= = expression followed by for clause +
zero or more for or of clauses

>>> vec = [2,4,6]

>>> [3*x for x in vec]

[6, 12, 18]

>>> [{x: x**2} for x in vec}

[{2: 4}, {4: 16}, {6: 36}]

28-Apr-02 Advanced Programming
Spring 2002

List comprehensions

= cross products:

>>> vecl = [2,4,6]

>>> vec2 = [4,3,-9]

>>> [x*y for x in vecl for y in vec2]
[8,6,-18, 16,12,-36, 24,18,-54]

>>> [x+y for x in vecl and y in vec2]
[6.5,-7,8,7,-5,10,9,-3]

>>> [vecl[i]*vec2[i] for i in

range(len(vecl))]
[8,12,-54]
28-Apr-02 Advanced Programming
Spring 2002

List comprehensions

= can also use if:

>>> [3*x for x in vec if x > 3]
[12, 18]

>>> [3*x for x in vec if x < 2]

1

28-Apr-02 Advanced Programming
Spring 2002

del - removing list items

= remove by index, not value

= remove slices from list (rather than by
assigning an empty list)

>>> a = [-1,1,66.6,333,333,1234.5]

>>> del a[O0]

>>> a

[1,66.6,333,333,1234.5]

>>> del a[2:4]

>>> a

[1,66.6,1234.5]

28-Apr-02 Advanced Programming
Spring 2002

Tuples and sequences

= lists, strings, tuples: examples of
sequence type

= tuple = values separated by commas

>>> t = 123, 543, "bar”
>>> t[0]

123

>>> t

(123, 543, "bar®)

28-Apr-02 Advanced Programming
Spring 2002

Tuples

= Tuples may be nested
>>>u = t, (1,2)
>>> y

((123, 542, 'bar’), (1,2))

= kind of like structs, but no element names:

= (x,y) coordinates
= database records

= like strings, immutable - can't assign to
individual items

28-Apr-02 Advanced Programming
Spring 2002

Tuples

= Empty tuples: ()

>>> empty =)

>>> len(empty)

0

= one item - trailing comma
>>> singleton = "foo",

28-Apr-02 Advanced Programming
Spring 2002

Tuples

= sequence unpacking - distribute
elements across variables

>>> t = 123, 543, "bar”

>>> X, ¥y, z=1

>>> X

123

= packing always creates tuple

= unpacking works for any sequence

28-Apr-02 Advanced Programming
Spring 2002

Dictionaries

= like Tcl or awk associative arrays

= indexed by keys

= keys are any immutable type: e.g., tuples
= but not lists (mutable!)

= uses 'key: value' notation

>>> tel = {"hgs" : 7042, "lennox": 7018}

>>> tel["cs®"] = 7000
>>> tel

28-Apr-02 Advanced Programming
Spring 2002

Dictionaries

= no particular order

= delete elements with del
>>> del tel["foo"]

= keys() method - unsorted list of keys

>>> tel.keys()

[Fcs®, "lennox®, "hgs®]
= use has_key() to check for existence
>>> tel.has_key("foo")
0

28-Apr-02 Advanced Programming
Spring 2002

Conditions

= can check for sequence membership with is
and Is not:
>>> if (4 in vec):
print "4 is"
= chained comparisons: a less than b AND b
equals c:
a<b-==c
= and and or are short-circuit operators:
= evaluated from left to right
= stop evaluation as soon as outcome clear

28-Apr-02 Advanced Programming
Spring 2002

Conditions

= Can assign comparison to variable:
>>> s1,s2,s3="", "foo", “bar”
>>> non_null = sl or s2 or s3
>>> non_null
foo

= Unlike C, no assignment within
expression

28-Apr-02 Advanced Programming
Spring 2002

Comparing sequences

= unlike C, can compare sequences (lists,
tuples, ...)
= |exicographical comparison:
= compare first; if different > outcome
= continue recursively
= subsequences are smaller
= strings use ASCII comparison

= can compare objects of different type, but
by type name (list < string < tuple)

28-Apr-02 Advanced Programming
Spring 2002

Comparing sequences

(1,2,3) < (1,2,4)

[1,2,3] < [1,2,4]

'ABC' < 'C' < 'Pascal' < 'Python’
(1,2,3) == (1.0,2.0,3.0)

1,2) < (1,2,-1)

28-Apr-02 Advanced Programming
Spring 2002

Modules

= collection of functions and variables,
typically in scripts

= definitions can be imported

= file name is module name + .py

= e.g., create module fibo.py

def fib(n): # write Fib. series up to n

def fib2(n): # return Fib. series up to n

28-Apr-02 Advanced Programming
Spring 2002

Modules

= import module:
import fibo
= Use modules via "name space":
>>> fibo.fib(1000)
>>> fibo._ name__
"fibo"
= can give it a local name:
>>> fib = fibo.fib
>>> Fib(500)

28-Apr-02 Advanced Programming
Spring 2002

Modules

= function definition + executable statements
= executed only when module is imported

= modules have private symbol tables

= avoids name clash for global variables

= accessible as moaule.globalname

= can import into name space:
>>> from fibo import fib, fib2
>>> Fib(500)

= can import all names defined by module:
>>> from fibo import *

28-Apr-02 Advanced Programming
Spring 2002

Module search path

= current directory

list of directories specified in PYTHONPATH
environment variable

uses installation-default if not defined, e.qg.,
.:/usr/local/lib/python

= uses sys.path

>>> import sys

>>> sys.path

["". "C:\\PROGRA~1\\Python2.2", "C:\\Program
Files\\Python2.2\\DLLs", “C:\\Program
Files\\Python2.2\\lib", "C:\\Program
Files\\Python2_2\\lib\\lib-tk", "C:\\Program
Files\\Python2.2", “C:\\Program Files\\Python2_2\\lib\\site-
packages”]

28-Apr-02 Advanced Programming
Spring 2002

Compiled Python files

= include byte-compiled version of module if
there exists fibo.pyc in same directory as
fibo.py

= only if creation time of fibo.pyc matches
fibo.py

= automatically write compiled file, if possible
= platform independent

= doesn't run any faster, but /oads faster

= can have only .pyc file - hide source

28-Apr-02 Advanced Programming
Spring 2002

Standard modules

= system-dependent list
= always sys module
>>> import sys
>>> sys.pl
>>> f
>>> sys.p2

>>> sys.path.append("/some/directory”)

28-Apr-02 Advanced Programming
Spring 2002

Module listing

= use dir() for each module
>>> dir(fibo)
['__name__ ', 'fib", 'fib2']

[*_displayhook_*, *_doc_*, °_excepthook _*, *__name_*
stdout__*, *_getfrane*, *argv", “builtin_module,

stderr, *_st
s, “byteorder”,

28-Apr-02 Advanced Programming
Spring 2002

Classes

mixture of C++ and Modula-3

multiple base classes

derived class can override any methods of its

base class(es)

= method can call the method of a base class
with the same name

= objects have private data

= C++ terms:

= all class members are public

= all member functions are virtual

= no constructors or destructors (not needed)

28-Apr-02 Advanced Programming
Spring 2002

Jack
高亮

Classes

= classes (and data types) are objects

= puilt-in types cannot be used as base
classes by user

= arithmetic operators, subscripting can
be redefined for class instances (like
C++, unlike Java)

28-Apr-02 Advanced Programming
Spring 2002

Class definitions

Class ClassName:
<statement-1>

<statement-N>
= must be executed
= can be executed conditionally (see Tcl)
= creates new namespace

28-Apr-02 Advanced Programming
Spring 2002

Namespaces

= mapping from name to object:
= built-in names (abs())
= global names in module
= local names in function invocation
= attributes = any following a dot
= z_real, z_imag
= attributes read-only or writable
= module attributes are writeable

28-Apr-02 Advanced Programming
Spring 2002

Namespaces

= scope = textual region of Python program
where a namespace is directly accessible
(without dot)
= innermost scope (first) = local names
= middle scope = current module's global names
= outermost scope (last) = built-in names
= assignments always affect innermost scope
= don't copy, just create name bindings to objects

= global indicates name is in global scope

28-Apr-02 Advanced Programming
Spring 2002

Class objects

= obj -name references (plus module!):

class MyClass:
"A simple example class"
i =123
def f(self):
return "hello world*
>>> MyClass. i
123

= MyClass. T is method object

28-Apr-02 Advanced Programming
Spring 2002

Class objects

= class instantiation:
>>> x = MyClassQ
>>> x.fQ
“hello world*
= creates new instance of class
* note x = MyClass vs. x = MyClass(Q)
= init__ () special method for
initialization of object
def __init__(self,realpart,imagpart):
self.r = realpart
self.i = imagpart

28-Apr-02 Advanced Programming
Spring 2002

Instance objects

= attribute references

= data attributes (C++/Java data
members)
= created dynamically
x.counter =1
while x.counter < 10:

x.counter = x.counter * 2

print x.counter
del x.counter

28-Apr-02 Advanced Programming
Spring 2002

Method objects

= Called immediately:
x.FQO
= can be referenced:
xF = x.F
while 1:
print xfQ)
= object is passed as first argument of
function - 'self'
= x.f() is equivalent to MyClass.f(x)

28-Apr-02 Advanced Programming
Spring 2002

Notes on classes

= Data attributes override method
attributes with the same name

= no real hiding - not usable to
implement pure abstract data types

= clients (users) of an object can add
data attributes

= first argument of method usually called
self
= 'se ' has no special meaning (cf. Java)

28-Apr-02 Advanced Programming
Spring 2002

Another example

= bag.py
class Bag:

def __init__(self):
self.data = []

def add(self, x):
self.data.append(x)

def addtwice(self,x):
self.add(x)
self.add(x)

28-Apr-02 Advanced Programming
Spring 2002

Another example, cont'd.

= invoke:
>>> from bag import *
>>> 1 = Bag(Q)
>>> |.add("first")
>>> |.add("second®)
>>> |.data
[“first®, "second"]

28-Apr-02 Advanced Programming
Spring 2002

Inheritance

class DerivedClassName(BaseClassName)
<statement-1>

<statement-N>

= search class attribute, descending chain
of base classes

= may override methods in the base class
= call directly via BaseClassName.method

28-Apr-02 Advanced Programming
Spring 2002

10

Multiple inheritance

class DerivedClass(Basel,Base2,Base3):
<statement>

= depth-first, left-to-right

= problem: class derived from two classes
with a common base class

28-Apr-02 Advanced Programming
Spring 2002

Private variables

= No real support, but textual
replacement (name mangling)

= var is replaced by
_classname_var

= prevents only accidental modification,
not true protection

28-Apr-02 Advanced Programming
Spring 2002

~ C structs

= Empty class definition:
class Employee:
pass

john = Employee()
john_name = *"John Doe*
john.dept = "CS*
john.salary = 1000

28-Apr-02 Advanced Programming
Spring 2002

Exceptions

= syntax (parsing) errors

while 1 print “"Hello World*®
File "<stdin>", line 1
while 1 print "Hello World"
N

SyntaxError: invalid syntax
= exceptions

= run-time errors

= e.g., ZeroDivisionError,
NameError, TypeError

28-Apr-02 Advanced Programming
Spring 2002

Handling exceptions

while 1:
try:
x = int(raw_input("Please enter a number: *))
break
except ValueError:
print "Not a valid number™

First, execute try clause
if no exception, skip except clause

if exception, skip rest of try clause and use except
clause

if no matching exception, attempt outer try
statement

28-Apr-02 Advanced Programming
Spring 2002

Handling exceptions

= try.py
import sys
for arg in sys.argv[1:]:
try:
f = open(arg, "r°)
except IOError:
print “cannot open®, arg
else:
print arg, “lines:", len(f.readlines())
f.close
= e.g., as python try.py *.py

28-Apr-02 Advanced Programming
Spring 2002

11

Language comparison

Tcl |Perl |Python |JavaScript |Visual
Basic
Speed development v |V v v v
regexp v v v
breadth extensible v 4 v
embeddable v v
easy GUI v v (Tk) v
net/web v |V v v v
enterprise | cross-platform v |V v v
118N v v v v
thread-safe v v v
database access |V |V v v 4
28-Apr-02 Advanced Programming
Spring 2002

12

